A Genetic Algorithm Approach to Design Evolution Using Design Pattern Transformation
نویسندگان
چکیده
Improving software quality is a major concern in software development process. Despite all previous attempts to evolve software for quality improvement, these methods are neither scalable nor fully automatable. In this research we approach software evolution problem by reformulating it as a search problem. For this purpose, we applied software transformations in a form of GOF patterns to UML design model and evaluated the quality of the transformed design according to Object-Oriented metrics, particularly ’Distance from the Main Sequence’. This search based formulation of the problem enables us to use Genetic Algorithm for optimizing the metrics and find the best sequence of transformations. The implementation results show that Genetic Algorithm is able to find the optimal solution efficiently, especially when different genetic operators, adapted to characteristics of transformations, are used. Overall, we conclude that software transformations can successfully be approached automatically using evolutionary algorithms.
منابع مشابه
ROBUST FUZZY CONTROL DESIGN USING GENETIC ALGORITHM OPTIMIZATION APPROACH: CASE STUDY OF SPARK IGNITION ENGINE TORQUE CONTROL
In the case of widely-uncertain non-linear system control design, it was very difficult to design a single controller to overcome control design specifications in all of its dynamical characteristics uncertainties. To resolve these problems, a new design method of robust fuzzy control proposed. The solution offered was by creating multiple soft-switching with Takagi-Sugeno fuzzy model for optim...
متن کاملطراحی گرین فینوسیل بر اساس متامدلهای شبکه عصبی مصنوعی
Grain design is the most important part of solid rocket motor design. In this paper the goal is Finocyl grain design based on predetermined objective function with respect to Thrust history or Pressure history in order to satisfy various thrust performance requirements through an innovative design approach using Genetic algorithm optimization method. The classical sampling method is used for de...
متن کاملA Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010